

- Small amount of Sample needed usually 10^{-6} or μg quantities

Many types of Ionization

Electron Impact (EI)

$$
M^{-\infty} \xrightarrow{-e^{-}} M^{0+}+\text { fragments }
$$

radical cation
ondecular Ion
good for molecules upto $3500 \mathrm{~g} / \mathrm{mol}$

Electrospray Ionization (EST)

$$
M \xrightarrow{+H^{+}}[M-H]^{+}+\text {few fragments }
$$

molecular ion good for indecules pto $100,00 \mathrm{~g} / \mathrm{ml}$

Instruments Can be High resolution or Low resolution

High resolution - For Sig figs on molar Mass

$$
M^{0+}=58.04187 \mathrm{myz}
$$

Low resolution - 4 sig figs on molar mass

$$
M^{+}=58.04 \mathrm{~m} / \mathrm{z}
$$

Low Reodution

How many molecular formulas fit $58.04 \mathrm{~m} / \mathrm{z}$ ratio?

- 16 molecular formulas by calculator that match

High Resolution Data How many fit $58.04187 \mathrm{~m} / \mathrm{z}$ ratio? only 1 formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

Frequently use with mass spec calculators which make it easier, but also frequently done by hand w/ wow res data.

Formation of M^{0+}

Highest occoupied ondecular orbital is a πe^{-}or lone pair

Molecular ions can fragment by homolytic or heterolytic cleavage

Homolytic

Heterolytic

Two main types of cleavages that we look for:
alpha α
mclafferty

x can be any element.
Usually $0, N$, halogen, but Can also be Carbon
$\stackrel{+}{X}=C \quad \dot{C}-R$ cation fragment "observable" M / z

Radical Neutral "Loss"

Mchafferty Special type with carbonyls of all types

observable
Loss M / Z

Molecular Ion
Three ways to find the molecular formula.

- Mass spec calculator
- Rule of 13
$-{ }^{13} C$ isotope ratio
Rule of 13
Organic molecule will have $C: I t$ ratio that is $1: 1$

$$
\begin{aligned}
& \mathrm{C}-\mathrm{H} \quad(\mathrm{CH}) \\
& 12 \text { amu }+1 \text { amu }=13 \mathrm{amu} \\
& M y z \text { ratio }=86 \quad C_{x} H_{y} \\
& \begin{array}{l}
1 3 \longdiv { 8 6 } \\
\frac{78}{8} \text { reminder }
\end{array} \\
& \frac{X}{\frac{X H}{C_{x} H_{y}}} \quad \text { remainder }=\text { additional Hydrogers } \\
& \mathrm{C}_{x} \mathrm{H}_{x} \\
& \mathrm{C}_{6} \mathrm{H}_{6}+8 \text { ami's left } \\
& +8 \longrightarrow 8 \mathrm{H}^{\prime} \mathrm{s} \\
& \mathrm{C}_{6} \mathrm{H}_{14} \quad 6 \times 12=72 \\
& 1 \times 14=\frac{14}{86}
\end{aligned}
$$

Try Rule 13 w/ $\mathrm{mz}=212$

$$
\begin{array}{ll}
13 \begin{array}{l}
\frac{16}{212} \\
\frac{208}{4}
\end{array} \quad C_{16} H_{20} & 16 \times 12=192 \\
20 \times 1= & \frac{20}{212} \\
1 C=12 H
\end{array}
$$

IZame 12 amu

$$
C_{15} H_{20+12}=C_{15} H_{32}
$$

Convert Carbons mass into hydrogen

$$
\begin{aligned}
& 212 \\
& \text { or } \mathrm{C}_{16} \mathrm{H}_{20} \frac{\frac{34}{\frac{34}{14}}}{\frac{\frac{1}{114}}{7}} \text { units unsat } \\
& \mathrm{C}_{15} \mathrm{H}_{32} \quad \frac{-32}{-32} 0 \text { units unsat }
\end{aligned}
$$

What about other dements?

12 амл 12 ами

$$
\begin{aligned}
& 1 C=12 H \\
& \mathbf{O}^{16 \text { ame }}=C^{16} \mathrm{CH}_{4} \\
& \text { 14amue }={ }^{14} \text { amm } \\
& \mathrm{CH}_{2} \\
& \text { 35ame } \\
& \mathrm{Cl}=C_{2} \mathrm{CH}_{11}
\end{aligned}
$$

$$
\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}
$$

$$
{ }_{2}+\frac{15}{2}
$$

How many Carbons are in our molecule?
$\Longrightarrow{ }^{13} C:{ }^{12} C$ ratio

$$
\frac{\left[\frac{\left(M^{+} \omega / 1^{13} C\right)_{\text {Relative abundance }}}{\left.\left(M^{++} \text {all }{ }^{12} C\right)_{\text {Relive abundance }}\right]}\right.}{1.1 \%\left({ }^{13} C:^{12} C\right. \text { natural abunance }}=\# \mathrm{C} \text { in } \text { formula }
$$

